Journal of Engineering Education Transformations,
Volume 31, No. 3, January 2018, ISSN 2349-2473, elSSN 2394-1707

Project Based Learning of Programming Subject:

Case study on Data Structures

Shridhar T Doddamani

Department of Automation and Robotics, BVBCET, Hubli
Shridhar_d@bvb.edu

Abstract: With the advisement of information
technology, students are inclined to learn computer
programming based subjects. This would help
students to incorporate the advancements in the
information technology to the applications of their
field of engineering. But teaching computer science
subjects to the students pursuing an non-1T degree is
challenging task. Since the students areaimingto join
industries with different domains, teaching the
subjects according to their requirements or that suits
their domain requirement will increase the interest of
students and will motivate them to learn the subject. In
laboratory we divided the experimental programs in
different categories like demonstration, exercise,
structured query, open ended and course project. The
programming concepts were taught using visual
effects that helped them to understand logic, data flow
of program and find the faults during execution time.
The effectiveness of learning programming language
and developing programming skills was significantly
improved with the investigated approach.

Keywords: Data Structures, non-software,
categorizations of experiments

Shridhar T Doddamani

Department of Automation and Robotics,
BVBCET, Hubli

Shridhar_d@bvb.edu

1. Introduction

In growing competitive world, Computer
programming is considered a basic and important skill
for any student pursuing a career in information
technology. While computer science (CS) and
information Science (IS) curricula provide rigorous
training in computer programming, other IT-related
majors such as Automation, Electronics, Electricals,
IT, Mech. Etc, can place at best a secondary or least
importance to programming. Teaching programming
courses insuch majors leads to several challenges.

The objective of the course is to expose students
with computational thinking and fill the gap between
computer science fundamentals and programming
skills. These objectives present several challenges. To
identify the possible challenges that can arise in the
course, several surveys are carries out on students and
noticed that student's interest in learning the subject is
not high because of the following aspects:

1. Theincorrect perceptionthat computer science is
the only IT degree where knowledge of
programming is needed.

2. The course content is highly logical and abstract;
students have some difficulties at the beginning
of learning, so that they feel the course is
difficult.

3. The course requires relatively high both in
theories and in practices, even though theory is

JEET



Journal of Engineering Education Transformations , Volume 31, No. 3, January 2018, ISSN 2349-2473, eISSN 2394-1707 251

easy to understand, but one may encounter other
difficulties in practice. Some students reflected
that they understood in the class, but fail to write
programs.

4. For non-computer-science students, their
instinctive feeling is the course is not their
major's courses, they will not think highly of it.

5. They do not know the relation between this
course and their major.

In our practice, we decided to address above
challenges by offering a unified approach to teach
computer programming and logically thinking to
solve computer problems for all students in their
programming course. Keeping the objectives and
challenges in mind, we explored to answer the
guestion “is there a unified approach to teach non-
major and to what extent and in what aspects they
could be taught same as CS major to solve real life
problemsthat are like to encounter”.

There are many practices in teaching computer
programming to non-major students [1, 2, and 3].
Most of them are embedded in at least one of the
computer science courses, and are combined with
programming techniques for CS students. Also there
are some courses which focus only on computational
thinking itself. For example, in many universities the
programming concepts are taught by using python,
simulation and visualization [4]. They focus on how
to describe and solve problem using a computer, and
how to write algorithm, manipulate information and
design programs using Python.

On the other hand, High-level application
development for non-computer science major using
image processing[5] Algorithm development and
visualization environment for novice learners[6],
visual computing in the form of computer graphics[7]
has been used in programming courses. Leutenegger
et al. [8] use games as tools to teach programming for
computer science students, but using multimedia-
focused languages. Duchowski et al. [9] use
fairlymathe- matical computer graphics algorithms to
teach an advanced pro- gramming course. Jordi et al.
[10] discuss teaching computer graphics specifically
related to information management. But their goal is
to make computer graphics relevant to information
systems and not basic programming.

2. Details of experiments

The Data Structures with C course is designed
from view of what is computation and how do you
perform it, how do you write efficient code to make
any system as automated and solve real-world
problems. The principles of selection of topics and
teaching methods are the basics of computer
programming that should be introduced with enough
details to practice computing with computers. The
course is developed with following objectives:

1. Storing and organizing data in acomputer so that it
can be used efficiently: Students could have used
computer for storing and organizing data manually
but could have never done the same with programs,
here the main goal is to expose the students about
storing and organizing data through computer
programs.

2. Implement programs that are efficient and fast to
execute and also structure the data:
Computational thinking is a new concept need to
be clearly introduced, including the basic
concepts, what it is and is not. Given the problem
statement students should solve it by writing the
program but the written program has to be efficient
and fastto execute.

3. Basic operations on data Structures like stacks,
queue, linked list, trees and graphs: Since thisisa
data structures lab, students need to understand the
fundamental data structures and able to explain
them without any difficulties.

4. Implementation of operations on stacks, queues,
linked list, trees and graphs: Understanding the
basic concept theoretically is not a challenging
task, but the challenge is to apply and solve the
real-world problems with respect to their
requirements.

5. Selection of Data Structures for a given
application: The criterion for selecting data
structure for student practice is that the concepts
are not only easy to be mastered, but also powerful
enough to practice core conceptions and skills of
computational thinking. Finally the students
should be able to choose the appropriate method
and technique in solving the real-world problem.

The course consists of 60-minutes lectures and 2
hours lab section per week for 14 weeks. Tablel shows

JEET



252 Journal of Engineering Education Transformations , Volume 31, No. 3, January 2018, ISSN 2349-2473, eISSN 2394-1707

how the lecture topics and related laboratories are
organized. It can be concluded from table that 80%
efforts are devoted to introduce computational
thinking.
Table 1. Mapping of theory topics with
laboratory exercises.

Week | Topics in theory

Exercises in Libratory

1,2 Basics of C
programming

Programs on sorting and
searching.

3 Functions and
pointers

Program to create function
instead of using inbuilt
functions. Program to
manage memory, files and
pointers.

4,5 Stacks, Queues

Program to perform basic
operations (PUSH and POP)
on stack. (conversion of
expressions ).

Program to simulate
arrangement of manufactured
goods in a box by robot on
first come first served
basisplace.

Program to assign jobs for a
robot and make it to perform
these jobs one after the other
in circular manner.

6 Linked lists using
stack and queue.

Program using dynamic
variables and pointers to
simulate the robot for cleanig
domestic equipments.

7 Circular and
doubly linked list

Program a robot that collects
the files from one person to
other person either by
following a pre-defined path
or an automatically generated
path..

8-9 Trees and Graphs

Program a robot that visits
each person and collects the
information that he has.
Program a robot that
identifies the shortest path of
objects and pick and place
the object from one place to
specified location.

trees and graphs
to simulate real-
world system

10 Use the concepts | Open
of stack ,queues
and lists to solve
real-world problem

11 Use the concept of | Open

12 Use any of the data
structure concept to
develop a system.

Identify real world problem
and implement the same.

JEET

The course is organized based on the books Data
Structures using C by Aaron M. Tenenbaum and
Introduction to The Design & Analysis of Algorithms
by Anany Levitin. Since our students are non-majors,
great care has been taken to present the ideas inamore
intuitive and interesting manner.  This is very
important because we just want to explore up to what
extent could non-majors taught same as CS-major,
and not to teach them to be computer scientists.

A good deal of this course deals with how
computations are expressed as algorithm and how the
correctness of them is assured. Also, students see how
computational thinking applies to various disciplines
to solve large scale problems.

1. Teaching Methodology

“What You See Is What You Code”, a well
known English proverb in Computer science majors
that insists how the programming has to be done with
respect to given problem statement. We have used few
approaches in order to attain the goals of having the
students to gain competence in Data structures,
algorithms and in C programming. The Visual studio
2010 is used to explain the code in which we can set
the break points and make program run step by step
and explain the flow of data and values visually.
Animations like selection sort, quick sort, binary
search etc, will help student grasp the concept very
easily. Making teams and giving problem statement to
each team and make them to discuss among
themselves and come with solution and then again sit
separately and writing programs encouraged student
involvement in class. Quiz's in the class to increase the
competency. Make them to solve new problems with
respect to known solved problems has increased
confidence to solve any kind of problems. The in
detail description of pedagogical practices are as
follows:

1.Getting familiar with program logic: The foremost
important thing in programming is to understand the
code and its logic i.e. flow of data with respect to logic
of program. To make students understand the concepts
clearly and to give some visual effects we use visual
studio to explain the code, the visual studio has a
provision to stop the execution of program for a given
break point and execute step by step by showing how
the data is flowing in the program. This technique will
help the student to understand program logic and data
flow in program very easily, italso helps in identifying
the faults in the program. Visual studio also helps in



Journal of Engineering Education Transformations , Volume 31, No. 3, January 2018, ISSN 2349-2473, eISSN 2394-1707 253

understanding difficult concepts like recursion, stack,
queues, linked list etc. For example recursion is the
method which calls itself again and again until
specified condition is met; this recursive concept can
be demonstrated by visual effect in which the
compiler calls the same function more than once by
changing the argument values as shown in Figurel

inT cnte=i;
int w=d,y=81

int fast(int m)

i @ n 5=

int main()

int num=o,factl=a;
printf(“enter the value t find factin
scanf{ “%d", Bnum);

- ] facel = fact{num);

8t

Figurel.

2. Animations: There are number of animations
available on net to teach algorithms like selection sort,
quick sort, binary search, sequential search and
animations for stacks, queues, linked lists and trees
helps student understand the concepts quickly and
easily.

3.Class activities: A class activity increases the
student involvement in class. In class we have
performed an activity in which the class is divided into
teams each of four members and different problem
statement is given to each team. Then the team is
asked to discuss among them self and get the solution.
Once all teams get the solution, students are asked to
sit separately and write the program. This helps
students to share the program logic among others and
motivates them to learn subject.

4.Referral programming:  This is a common
technique in which students solve the new problem
with reference to known solution for the similar
problem. While working with the real world
problems, most of the solutions are difficult so
students are asked to refer the known solution and
modify them according current required solution.

5.Continuous evaluation: Lab test will be conducted

after completion of every level(category) of
programs and students will be evaluated for pre-
specified marks and depending on the score inthe test
they will be decided whether they are eligible for next
test or not. For example, after completion of
demonstration exercises students need to write a test
for 10 marks, if a student fail then they are not eligible
for next test until they prove that they are fit for second
test by writing the first test again.

6. Programming Project: 20% of a student's grade is
based on a course project. Students are divided into
teams; each team consists of 4 students. This team
formation is done by students by themselves. Each
team has to select a problem statement and submit it in
the form of synopsis. Synopsis has to include problem
statement, flowchart, and function/methods used and
expected results. We got 11 synopses each with an
interesting problem statements like: Demonstration
of ATM transactions, online shopping, mobile phone
log, vending machine, Election commission, Hospital
management, rural one etc.  Students were
successfully completed the course projects.

4. Mapping of CLOswith PO's:

1. Storing and organizing data in acomputer so that it
can be used efficiently: At the end of the course
students are able to write the programs store and
organize the data effectively.

2. Implement programs that are efficient and fast to
execute and also structure the data: At the end of
the course student are able to write the programs
using functions, pointers and dynamic memory
allocation techniques that are efficient and fast in
execution.

3. Basic operations on data Structures like stacks,
queue, linked list, trees and graphs: At the end of
the course students demonstrated the different
operations on stack, queues, linked lists, trees and
graphs.

4. Implementation of operations on stacks, queues,
linked list, trees and graphs: Students were able to
use the dynamic memory allocation and linked list
concepts to implement real-world applications of
stack, queues and linked lists.

5. Selection of Data Structures for a given
application: As a course project students

JEET



254 Journal of Engineering Education Transformations , Volume 31, No. 3, January 2018, ISSN 2349-2473, eISSN 2394-1707

successfully identified the problem and data
structures involved in itand solved the problem.

5. Analysis:

The objective of the course is providing a
foundation of programming principles and data
structures that student can and will apply to discipline
study. Our goal is to involve student actively in using
programming in their discipline and seek a unified
approach to teach various non-majors. To evaluate the
effectiveness of our approach, during the course we
interacted with student personally and took the
response about various aspects regarding the course.

Student Reaction: The class consists of 46 students
where 30% of the students are from diploma back
ground.90% of the students were interested to learn
from basic and requested to teach basics of C
programming in first week of the course and more
than 80% of the students were motivated to learn the
course in depth and wanted to learn write effective
programs. Following are the feedbacks from the
studentwith respect to our teaching methodologies:

Role of visual studio in understanding the
program: Student reacted that this technique was very
effective and they can easily understand the logic and
data flow of the program. Many of the students started
debugging the code using break points which helped
them to trace the fault during run time and solve it.

Animations: Students were interested to see the
animations and understand how the algorithms work.
Many of the students given feedback that they want to
learn about creating the animations.

Class activities: The class activity helped students
interact with each other, share their ideas and come up
with effective coding. Students reacted that they want
more of these activitiesin future.

Referral programming: When the problem
definitions like Bus/ flight reservation, Toll tax booth
system, cylinder booking systems were given students
searched in the internet but they are ended with not
getting the solution or with lengthy solutions.
Therefore are asked to refer logic and write their own
programs which helped them to get solution as well as
understand the logic and concepts.

JEET

6. Conclusion and futureworks:

Future work:

There are some more improvements which can be
brought in the class that can improve the performance
of student. First, class organization can be improved
and instead of giving different problem statement
single problem statement can be given to analyze the
performance of the students. Second, in class
exercises were students should write the programs in
the system instead of writing in book. This will help
student over come syntax errors and develop good
programming skill. Third, image processing concepts
can be used to teach programming [5].

Conclusion:

The main objective in mind when teaching this
course is to make programming more interesting to
students who do not view it so, assuming that greater
student interest would lead to better performance in
class and deeper understanding and appreciation of
the subject. Introductory programming courses often
teach such basic concepts that it is difficult to design
assignments that are simultaneously simple,
challenging and interesting. We feel that our teaching
methodology provides all three aspects. Our
interactions in the classroom, along with the average
performance of the students in the assignments,
provide encouraging evidence that our approach
worked well in these aspects.

We believe that for non-majors with no or less prior
background, it is no problem to teach them to
implement various data structures and algorithms, to
think algorithmically, which are just same as teaching
CS-majors. We think we are heading on the right
direction. Student's survey shows that the course
fulfilled its objectives.

References:

[1] Daniel D. Garcia, colleen M.Lewis, John P.
Dougherty, and Mattew C. Jadud. If, you might
be a computational thinker!.In proceedings of
the 41st ACM SIGCSE. ACM NewYork, USA,
2010; 263-264.

[2] Eric Andew Freudenthal, Mary K. Roy,
Alexandria Nicole Ogrey, Tanja Magoc”MCPT:
media propelled computational thinking” in



Journal of Engineering Education Transformations , Volume 31, No. 3, January 2018, ISSN 2349-2473, eISSN 2394-1707 255

proceedings of 41st ACM SIGCSE. ACM,
Newyork. USA,2010; 37-41.

[3]Honh Qin. Teaching computational thinking
through bioinformatics to biology students. In
Proceedings of the 40th ACM SIGCSE. ACM
New York, USA,2009;188-191.

[4] Susanne Hambrusch, Christoph Hoffmann, John
T. Korb, Mark Haugan, Antony L. Hosking. A
multidisciplinary approach towards
computational thinking for science majors.
SIGCSE Bull. 2009; 41(1): 183-187.

[5] Amit Shesh, “ High-level application
development for non-computer science majors
using image processing”,2012.170-177.

[6] Christopher D. Hundhausen?, Jonathan L. Brown
“What You See Is What You Code: A "live"

algorithm development and visualization
environment for novice learners”,2006,22-47.

[7]Davis TA, Geist R, Matzko S, Westall J. tewnZ:
visual computing in the form of computer
graphics. In: SIGCSE; 2004. p. 125-9.

[8] Leutenegger S, Edgington J. A games first
approach to teaching introductory programming.
In: Proceedings of SIGCSE; 2007. p. 115-8.

[9] DavisT. Teaching data structures and algorithms
through graphics. In: Proceedings of
Eurographics—education papers; 2007. p.
33-40.

[10] Jordi L, Esparaza J. Computer graphics for
information system programmers. In:
Proceedings of Eurographics—education
papers; 2010. p.57-62

JEET



